Home
Class 11
PHYSICS
Find maximum/maximum value of y in the f...

Find maximum/maximum value of `y` in the functions given below
(a) `y=5 - (x -1)^(2)` (b) `y =4x ^(2) - 4x + 7`
(c) `y= x^(3) - 3x`
`y =x^(3) - 6x^(2) + 9x + 15`
(e) `y = (sin 2x - x)`, where `- (pi)/(2) le xxle(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

(e) `y = (sin 2x -y)`
`(dy)/(dx) = 2 cos 2x - 1`
and `(d^(2)y)/(dx^(2)) =- 4 sin 2x`
Putting `(dy)/(dx) = 0`, we get
`2 cos 2x - 1 = 0`
`:. cos 2x = (1)/(2)`
or `2x = +- 60^(@) +- (pi)/(3)`
or `pi//2 le x le pi//2`
At `2x = + 60^(@), (d^(2)y)/(dx^(2))` is `-ve`, so value of `y` is
maximum. At `2x =- 60^(@), (d^(2)y)/(dx^(2))` is positive. So value of `y` is minimum.
`:. y_(max) = sin (+60^(@)) - (pi)/(6)`
`= ((sqrt(3))/(2)-(pi)/(6))` at `2x = (pi)/(3)`
or `x = pi//6`
and `y_(mix) = sin (-60^(@)) +(pi)/(6)`
at `x = - (pi)/(6)`
`= ((pi)/(6)-(sqrt(3))/(2))`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

Find maximum or minimum values of the functions (a) y =25 x^(2) + 5 - 10 x (b) y = 9 - (x - 3)^(2)

Find the maximum and minimum values of the function y=4x^3-3x^2-6x+1

Find the maximum and minimum values of the function y=4x^3 -15x^2 +12x – 2

Find the maximum and the minimum value of the function y=x^(3)+6x^(2)-15x+5

For the equations given below, tell the nature of graphs. (a) y =2x^(2) (b) y =-4x^(2) +6 (c) y = 6 ^(-4x) (d) y = 4(1 -e^(-2x)) (e) y =(4)/(x) (f) y =-(2)/(x)

What is the maximum value of the function y=(2x^(2)+3x+4)/(x^(2)+x+3)

Find dervatives of the following functions: (i) y=2x^(3) , (ii) y=4/x , (iii) y=3e^(x) , (iv) y=6 ln x , (v) y=5 sin x

Find the maximum value of x+y subjected to the condition 4x+3y le 12, 2x + 5y le 10, x le 0, x ge 0, y ge 0 .