Home
Class 12
MATHS
lim(x rarr2)(log(2x-3))/(2(x-2))=1...

lim_(x rarr2)(log(2x-3))/(2(x-2))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that lim_(x rarr 2) log(2x-3)/(2(x-2))=1

Prove that: lim_(x rarr -2) log(x+3)/(x+2)=1

STATEMENT-1: lim_(x rarr oo)(log[x])/(sqrt(([x])/(sec^(2)-1)))=0 STATEMENT-2: lim_(x rarr0)(sqrt(sec^(2)-1))/(x) does not exist.STATEMENT-3: lim_(x rarr2)(x-1)^((1)/(x-2))=1

lim_(x rarr0)(log(1-(x)/(2)))/(x)

Lim_(x rarr0)(log(1+x)-x)/(x^(2))

Evaluate lim_(x rarr2)(x-2)/(log_(a)(x-1))

Evaluate: lim_(x rarr2)(x-2)/(log_(a)(x-1))

a=lim_(x rarr0)(ln(cos2x))/(3x^(2)),b=lim_(x rarr0)(sin^(2)2x)/(x(1-e^(x))),c=lim_(x rarr1)(sqrt(x)-x)/(ln x)

The limit lim_(x rarr2)(log_(e)(x-2))/(log_(6)(e^(x)-e^(2))) equals

"lim_(x rarr0)[(log(2+x)-log(2-x))/(x)]