Home
Class 11
PHYSICS
In the equation int (dx)/sqrt(2ax - x^...

In the equation ` int (dx)/sqrt(2ax - x^(2) ) = a^(2) sin ^(-1) [(x)/(a) - 1]`. Find the value of n .

Text Solution

Verified by Experts

`[(dx)/(sqrta( 2 as - x^(2))]` is dimensionless.
Therefore ` [a^(2) sin ^(-1) ((s)/(a) - 1 )]` should also be dimension Hence,` a = 0 `
Promotional Banner

Topper's Solved these Questions

  • UNIT AND DIMENSIONS

    DC PANDEY|Exercise Assertion And Reason|2 Videos
  • UNIT AND DIMENSIONS

    DC PANDEY|Exercise More Than One Correct|5 Videos
  • THERMOMETRY,THERMAL EXPANSION & KINETIC THEORY OF GASES

    DC PANDEY|Exercise Level 2 Subjective|9 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Medical entrances gallery|32 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(2)ax-x^(2))=a^(n)sin^(-1){(x-a)/(a)}a->

int1/sqrt(2ax-x^2)dx

Find int(dx)/(sqrt(1+sin2x))

int(dx)/(sqrt(a^(2)-x^(2)))=sin^(-1)(x/a)+C

Given that int (dx)/(sqrt(2 ax - x^2)) = a^n sin^(-1) ((x-a)/(a)) where a is a constant. Using dimensional analysis. The value of n is

int sqrt(1-sin 2x) dx

int(1)/((sqrt(1-x^(2)))sin^(-1)x)dx

Evaluate: int(1)/(sqrt(1-x^(2))(2+3sin^(-1)x)))dx