Home
Class 11
PHYSICS
Obtain the magnitude of 2A - 3B if A...

Obtain the magnitude of 2A - 3B if
`A = hati +hatj- 2 hat k and B = 2 hat i - hat j+hat k` .

A

√ 150

B

90

C

√ 90

D

√ 80

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the magnitude of \( 2A - 3B \) given the vectors \( A \) and \( B \), we will follow these steps: ### Step 1: Write down the vectors Given: \[ A = \hat{i} + \hat{j} - 2\hat{k} \] \[ B = 2\hat{i} - \hat{j} + \hat{k} \] ### Step 2: Calculate \( 2A \) We need to calculate \( 2A \): \[ 2A = 2(\hat{i} + \hat{j} - 2\hat{k}) = 2\hat{i} + 2\hat{j} - 4\hat{k} \] ### Step 3: Calculate \( 3B \) Next, we calculate \( 3B \): \[ 3B = 3(2\hat{i} - \hat{j} + \hat{k}) = 6\hat{i} - 3\hat{j} + 3\hat{k} \] ### Step 4: Compute \( 2A - 3B \) Now we will compute \( 2A - 3B \): \[ 2A - 3B = (2\hat{i} + 2\hat{j} - 4\hat{k}) - (6\hat{i} - 3\hat{j} + 3\hat{k}) \] Distributing the negative sign: \[ = 2\hat{i} + 2\hat{j} - 4\hat{k} - 6\hat{i} + 3\hat{j} - 3\hat{k} \] Combining like terms: \[ = (2 - 6)\hat{i} + (2 + 3)\hat{j} + (-4 - 3)\hat{k} \] \[ = -4\hat{i} + 5\hat{j} - 7\hat{k} \] ### Step 5: Find the magnitude of \( 2A - 3B \) The magnitude of a vector \( \vec{V} = x\hat{i} + y\hat{j} + z\hat{k} \) is given by: \[ |\vec{V}| = \sqrt{x^2 + y^2 + z^2} \] For our vector \( -4\hat{i} + 5\hat{j} - 7\hat{k} \): \[ |\vec{V}| = \sqrt{(-4)^2 + (5)^2 + (-7)^2} \] Calculating each term: \[ = \sqrt{16 + 25 + 49} \] \[ = \sqrt{90} \] ### Final Answer Thus, the magnitude of \( 2A - 3B \) is: \[ |\vec{V}| = \sqrt{90} \] ---

To solve the problem of finding the magnitude of \( 2A - 3B \) given the vectors \( A \) and \( B \), we will follow these steps: ### Step 1: Write down the vectors Given: \[ A = \hat{i} + \hat{j} - 2\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    DC PANDEY|Exercise Exercise 5.1|5 Videos
  • VECTORS

    DC PANDEY|Exercise Exercise 5.2|4 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Medical entrances gallery|32 Videos
  • WAVE MOTION

    DC PANDEY|Exercise Integer Type Question|11 Videos

Similar Questions

Explore conceptually related problems

Find | -> axx -> b| , if -> a= hat i-7 hat j+7 hat k and -> b=3 hat i-2 hat j+2 hat k

Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d vec c= hat i+ hat j-2 hat k be three vectors. A vector in the plane of vec ba n d vec c , whose projection on vec a is of magnitude sqrt(2//3) , is a. 2 hat i+3 hat j-3 hat k b. 2 hat i-3 hat j+3 hat k c. -2 hat i- hat j+5 hat k d. 2 hat i+ hat j+5 hat k

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are laid off from one point. Vector hat d , which is being laid of from the same point dividing the angle between vectors vec aa n d vec b in equal halves and having the magnitude sqrt(6), is a. hat i+ hat j+2 hat k b. hat i- hat j+2 hat k c. hat i+ hat j-2 hat k d. 2 hat i- hat j-2 hat k

The position vectors of the points Pa n dQ with respect to the origin O are vec a= hat i+3 hat j-2 hat k and vec b=3 hat i- hat j-2 hat k , respectively. If M is a point on P Q , such that O M is the bisector of angleP O Q , then vec O M is a. 2( hat i- hat j+ hat k) b. 2 hat i+ hat j-2 hat k c. 2(- hat i+ hat j- hat k) d. 2( hat i+ hat j+ hat k)

The position vectors of the vectices A, B, C of a triangle ABC " are " hati - hat j - 3 hat k , 2 hati + hat j - 2 hat k and - 5 hati + 2 hat j - 6 hat k respectively. The length of the bisector AD of the angle angle BAC where D is on the line segment BC, is

Find the angle between the vectors vec A = hat I + 2 hat j- hat k and vec B =- hat I + hatj - 2 hat k .

Find vec adot vec b , when (i) vec a= hat i-2 hat j+ hat k and vec b=4 hat i-4 hat j+7 hat k (ii) vec a= hat j+2hat k and vec b = 2 hat i+ hat k (iii) vec a= hat j-hat k andvec b= 2 hat i+3 hat j-2 hat k

Find a unit vector perpendicular to each of the vector -> a+ -> b and -> a- -> b where -> a=3 hat i+2 hat j+2 hat k and -> b= hat i+2 hat j-2 hat k