Home
Class 11
PHYSICS
if axxb = bxxc != 0 with a != -c then sh...

if `axxb = bxxc != 0` with a `!= -c` then show that a+c = kb, where k is scalar.

Text Solution

Verified by Experts

`axxb = bxxc`
`axxb =- cxxb`
`:. axxb +cxxb = 0`
`(a+c)xxb =0`
`:. axxb !=0, bxxc != 0` , a,b,c are non zero vectors, `(a+c) != 0`
Hence a+c is paralle to b. `:. a+ c = kb`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    DC PANDEY|Exercise Exercise 5.1|5 Videos
  • VECTORS

    DC PANDEY|Exercise Exercise 5.2|4 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Medical entrances gallery|32 Videos
  • WAVE MOTION

    DC PANDEY|Exercise Integer Type Question|11 Videos

Similar Questions

Explore conceptually related problems

If vec a xxvec b=vec b xxvec c!=0, then show that vec a+vec c=mvec b, where m is any scalar.

If vec a xxvec b=vec b xxvec c!=0, then show that vec a+vec c=mvec b, where m is any scalar.

If vec a xx vec b= vec b xx vec c != vec 0 then which one is true where k is a suitable scalar?

If axxb=bxxc ne0 , then the correct statement is

If a'=(bxxc)/(["a b c"]),b'=(cxxa)/(["a b c"]),c'=(axxb)/(["a b c"]) then show that axxa'+bxxb'+cxxc'=0 , where a,b and c are non-coplanar.

If A be an n-square matrix and B be its adjoint, then show that Det (AB + KI_(n)) = [Det (A) + K]^(n) , where K is a scalar quantity.

If vec a xxvec b=vec a xxvec c,vec a!=vec 0 and vec b!=vec c show that vec b=vec c+tvec a for some scalar t