Home
Class 11
PHYSICS
Prove that |axxb^2 =a^2b^2 - (a.b)^2...

Prove that `|axxb^2 =a^2b^2 - (a.b)^2`

Text Solution

AI Generated Solution

To prove that \( | \mathbf{A} \times \mathbf{B} |^2 = |\mathbf{A}|^2 |\mathbf{B}|^2 - (\mathbf{A} \cdot \mathbf{B})^2 \), we can follow these steps: ### Step 1: Understand the Cross Product The magnitude of the cross product of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) is given by: \[ |\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| |\mathbf{B}| \sin \theta \] where \( \theta \) is the angle between the vectors \( \mathbf{A} \) and \( \mathbf{B} \). ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    DC PANDEY|Exercise Exercise 5.1|5 Videos
  • VECTORS

    DC PANDEY|Exercise Exercise 5.2|4 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Medical entrances gallery|32 Videos
  • WAVE MOTION

    DC PANDEY|Exercise Integer Type Question|11 Videos

Similar Questions

Explore conceptually related problems

If vec a and vec b are two vectors,then prove that (vec a xxvec b)^(2)=a^(2)b^(2)-(a.b)^(2)

Prove that: (a-b)^(2)=a^(2)-2ab+b^(2)

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

If (a^(2)-b^(2))sin theta+2ab cos theta=a^(2)+b^(2) then prove that tan theta=(a^(2)-b^(2))/(2ab)

If a, b, c are in GP, prove that (a^(2)+b^(2)), (ab+bc), (b^(2)+c^(2)) are in GP.

If ab+bc+ca=0 then prove that a^(2)b^(2)+b^(2)c^(2)+c^(2)a^(2)=-2abc (a+b+c)

Prove that |[b^2+c^2,ab,ac],[ab,c^2+a^2,bc],[ca,cb,a^2+b^2]| is always positive for real a, b and c.