Home
Class 11
PHYSICS
Find angle between A and B where, (a) A ...

Find angle between A and B where, (a) `A = 2hati and B =- 6 hati` (b) `A = 6hatj` and `B =- 2hatk` (c) `A = (2hati = 3hatj)` and `B = 4 hatk` (d) `A = 4hati` and `B = (-3hati + 3hatj)` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between two vectors A and B, we can use the formula: \[ \cos \theta = \frac{A \cdot B}{|A| |B|} \] where \( A \cdot B \) is the dot product of the vectors, and \( |A| \) and \( |B| \) are the magnitudes of the vectors A and B, respectively. ### (a) \( A = 2\hat{i} \) and \( B = -6\hat{i} \) 1. **Calculate the dot product \( A \cdot B \)**: \[ A \cdot B = (2\hat{i}) \cdot (-6\hat{i}) = 2 \times -6 \times (\hat{i} \cdot \hat{i}) = -12 \] 2. **Calculate the magnitudes of A and B**: \[ |A| = \sqrt{(2)^2} = 2 \] \[ |B| = \sqrt{(-6)^2} = 6 \] 3. **Substitute into the cosine formula**: \[ \cos \theta = \frac{-12}{2 \times 6} = \frac{-12}{12} = -1 \] 4. **Find the angle \( \theta \)**: \[ \theta = \cos^{-1}(-1) = 180^\circ \] ### (b) \( A = 6\hat{j} \) and \( B = -2\hat{k} \) 1. **Calculate the dot product \( A \cdot B \)**: \[ A \cdot B = (6\hat{j}) \cdot (-2\hat{k}) = 6 \times -2 \times (\hat{j} \cdot \hat{k}) = 0 \] 2. **Calculate the magnitudes of A and B**: \[ |A| = \sqrt{(6)^2} = 6 \] \[ |B| = \sqrt{(-2)^2} = 2 \] 3. **Substitute into the cosine formula**: \[ \cos \theta = \frac{0}{6 \times 2} = 0 \] 4. **Find the angle \( \theta \)**: \[ \theta = \cos^{-1}(0) = 90^\circ \] ### (c) \( A = 2\hat{i} - 3\hat{j} \) and \( B = 4\hat{k} \) 1. **Calculate the dot product \( A \cdot B \)**: \[ A \cdot B = (2\hat{i} - 3\hat{j}) \cdot (4\hat{k}) = 2 \times 4 \times (\hat{i} \cdot \hat{k}) - 3 \times 4 \times (\hat{j} \cdot \hat{k}) = 0 \] 2. **Calculate the magnitudes of A and B**: \[ |A| = \sqrt{(2)^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \] \[ |B| = \sqrt{(4)^2} = 4 \] 3. **Substitute into the cosine formula**: \[ \cos \theta = \frac{0}{\sqrt{13} \times 4} = 0 \] 4. **Find the angle \( \theta \)**: \[ \theta = \cos^{-1}(0) = 90^\circ \] ### (d) \( A = 4\hat{i} \) and \( B = -3\hat{i} + 3\hat{j} \) 1. **Calculate the dot product \( A \cdot B \)**: \[ A \cdot B = (4\hat{i}) \cdot (-3\hat{i} + 3\hat{j}) = 4 \times -3 \times (\hat{i} \cdot \hat{i}) + 4 \times 3 \times (\hat{i} \cdot \hat{j}) = -12 + 0 = -12 \] 2. **Calculate the magnitudes of A and B**: \[ |A| = \sqrt{(4)^2} = 4 \] \[ |B| = \sqrt{(-3)^2 + (3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] 3. **Substitute into the cosine formula**: \[ \cos \theta = \frac{-12}{4 \times 3\sqrt{2}} = \frac{-12}{12\sqrt{2}} = \frac{-1}{\sqrt{2}} \] 4. **Find the angle \( \theta \)**: \[ \theta = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = 135^\circ \] ### Summary of Angles - (a) \( 180^\circ \) - (b) \( 90^\circ \) - (c) \( 90^\circ \) - (d) \( 135^\circ \)

To find the angle between two vectors A and B, we can use the formula: \[ \cos \theta = \frac{A \cdot B}{|A| |B|} \] where \( A \cdot B \) is the dot product of the vectors, and \( |A| \) and \( |B| \) are the magnitudes of the vectors A and B, respectively. ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    DC PANDEY|Exercise Exercise 5.3|4 Videos
  • VECTORS

    DC PANDEY|Exercise Single Correct|39 Videos
  • VECTORS

    DC PANDEY|Exercise Exercise 5.1|5 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Medical entrances gallery|32 Videos
  • WAVE MOTION

    DC PANDEY|Exercise Integer Type Question|11 Videos

Similar Questions

Explore conceptually related problems

Find magnitude of A-2 B 3 C, where, A = 2hati+3hatj, B = hati + hatj and c =hatk.

Find the angle between the vertors vec(A) = hati + 2hatj - hatk and vec(B) = - hati +hatj - 2hatk .

Find the angle between the vectors vec(A) = 2 hati - 4hatj +6 hatk and vec(B) = 3 hati + hatj +2hatk .

Find the angles between the following pairs of vectors: (i) vec(A) = hati + hatj +hatk and vec(B) =- 2hati - hatj - 2 hatk . (ii) vec(A) =- 2hati +2hatj - hatk and vec(B) = 3hati + 6 hatj +2 hatk (iii) vec(A) = 4 hati +6 hatj - 3 hatk and vec(B) =- 2hati - 5hatj +7 hatk

Find the angle between the vectors vec A = hati + hatj + hatk and vec B =-hati - hatj + 2hatk .

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

Find the angles between the following pairs of vectors : vec A= 2hati - 4hatj+ 6hatk and vec B=3hati +hatj +2hatk .

Find the angle between the following vectors : (i) veca = 2hati-6hatj+3hatk and vecb = hati+2hatj-2hatk (ii) veca=6hati+3hatj-2hatk and vecb=4hati-2hatj+9hatk

Find the angles between the following pairs of vectors : vec A= -2hati + 2hatj -hatk and vec B=3hati +6hatj +2hatk .