Home
Class 11
PHYSICS
Three vectors which are coplanar with re...

Three vectors which are coplanar with respect to a certain rectangular co-ordinate system are given by `a = 4 hati - hatj, b = - 3hati + 2hatj and c =- 3hatj`
Find
(a) `a+b+c`
(b) `a+b+-c`
(c ) Find the angle between `a+b+c and a+b-c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the question. ### Given Vectors: - \( \mathbf{a} = 4 \hat{i} - \hat{j} \) - \( \mathbf{b} = -3 \hat{i} + 2 \hat{j} \) - \( \mathbf{c} = -3 \hat{j} \) ### (a) Find \( \mathbf{a} + \mathbf{b} + \mathbf{c} \) 1. **Add the vectors component-wise:** \[ \mathbf{a} + \mathbf{b} + \mathbf{c} = (4 \hat{i} - \hat{j}) + (-3 \hat{i} + 2 \hat{j}) + (0 \hat{i} - 3 \hat{j}) \] 2. **Combine the \( \hat{i} \) components:** \[ 4 - 3 + 0 = 1 \hat{i} \] 3. **Combine the \( \hat{j} \) components:** \[ -1 + 2 - 3 = -2 \hat{j} \] 4. **Final result for part (a):** \[ \mathbf{a} + \mathbf{b} + \mathbf{c} = 1 \hat{i} - 2 \hat{j} \] ### (b) Find \( \mathbf{a} + \mathbf{b} - \mathbf{c} \) 1. **Add the vectors component-wise:** \[ \mathbf{a} + \mathbf{b} - \mathbf{c} = (4 \hat{i} - \hat{j}) + (-3 \hat{i} + 2 \hat{j}) - (0 \hat{i} - 3 \hat{j}) \] 2. **Combine the \( \hat{i} \) components:** \[ 4 - 3 + 0 = 1 \hat{i} \] 3. **Combine the \( \hat{j} \) components:** \[ -1 + 2 + 3 = 4 \hat{j} \] 4. **Final result for part (b):** \[ \mathbf{a} + \mathbf{b} - \mathbf{c} = 1 \hat{i} + 4 \hat{j} \] ### (c) Find the angle between \( \mathbf{a} + \mathbf{b} + \mathbf{c} \) and \( \mathbf{a} + \mathbf{b} - \mathbf{c} \) 1. **Let \( \mathbf{u} = \mathbf{a} + \mathbf{b} + \mathbf{c} = 1 \hat{i} - 2 \hat{j} \) and \( \mathbf{v} = \mathbf{a} + \mathbf{b} - \mathbf{c} = 1 \hat{i} + 4 \hat{j} \)** 2. **Use the dot product to find the angle:** \[ \mathbf{u} \cdot \mathbf{v} = (1 \hat{i} - 2 \hat{j}) \cdot (1 \hat{i} + 4 \hat{j}) = 1 \cdot 1 + (-2) \cdot 4 = 1 - 8 = -7 \] 3. **Find the magnitudes of \( \mathbf{u} \) and \( \mathbf{v} \):** \[ |\mathbf{u}| = \sqrt{1^2 + (-2)^2} = \sqrt{1 + 4} = \sqrt{5} \] \[ |\mathbf{v}| = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \] 4. **Use the formula for the cosine of the angle:** \[ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{-7}{\sqrt{5} \cdot \sqrt{17}} = \frac{-7}{\sqrt{85}} \] 5. **Find the angle \( \theta \):** \[ \theta = \cos^{-1}\left(\frac{-7}{\sqrt{85}}\right) \] ### Summary of Results: - (a) \( \mathbf{a} + \mathbf{b} + \mathbf{c} = 1 \hat{i} - 2 \hat{j} \) - (b) \( \mathbf{a} + \mathbf{b} - \mathbf{c} = 1 \hat{i} + 4 \hat{j} \) - (c) \( \theta = \cos^{-1}\left(\frac{-7}{\sqrt{85}}\right) \)

To solve the problem step by step, we will follow the instructions given in the question. ### Given Vectors: - \( \mathbf{a} = 4 \hat{i} - \hat{j} \) - \( \mathbf{b} = -3 \hat{i} + 2 \hat{j} \) - \( \mathbf{c} = -3 \hat{j} \) ### (a) Find \( \mathbf{a} + \mathbf{b} + \mathbf{c} \) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    DC PANDEY|Exercise Example|39 Videos
  • VECTORS

    DC PANDEY|Exercise check point 2.1|15 Videos
  • VECTORS

    DC PANDEY|Exercise Single Correct|39 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Medical entrances gallery|32 Videos
  • WAVE MOTION

    DC PANDEY|Exercise Integer Type Question|11 Videos

Similar Questions

Explore conceptually related problems

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

Find magnitude of A-2 B 3 C, where, A = 2hati+3hatj, B = hati + hatj and c =hatk.

Given the three coplaner vectors vec(a) = 4 hati - hatj, vec(b) =- 3hati +2hatj and vec(c) =- 3hatj . Find the magnitude of the sum of the three vectors.

Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a xx c + b=0 and a.c =4, then |c|^(2) is equal to .

If a=hati+2hatj+3hatk,b=-hati+2hatj+hatk and c=3hati+hatj . If (a+tb) bot c , then t is equal to

Find the area of the triangle formed by the tips of the vectors vec(a) = hati - hatj - 3hatk, vec(b) = 4hati - 3hatj +hatk and vec(c) = 3 hati - hatj +2 hatk .

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

DC PANDEY-VECTORS-Subjective
  1. The work done by a force vecF during a displacement vecr is given by v...

    Text Solution

    |

  2. If vecA,vecB,vecC are mutually perpendicular show that vecCxx(vecAxxve...

    Text Solution

    |

  3. Prove that vecA.(vecAxxvecB)=0

    Text Solution

    |

  4. Find the resultant of the three vectors shown in figure (2W1). .

    Text Solution

    |

  5. Given an example for which vecA.vecB=vecC.vecB but vecA!=vecC.

    Text Solution

    |

  6. Obtain the angle between A+B and A-B if A = 2hati +3hatj and B = hati ...

    Text Solution

    |

  7. Deduce the condition for the vectors 2hati + 3hatj - 4hatk and 3hati -...

    Text Solution

    |

  8. Find the area of the parallelogram whose sides are represented by 2hat...

    Text Solution

    |

  9. If vectors A and B be respectively equal to 3hati - 4hatj + 5hatk and ...

    Text Solution

    |

  10. if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk. Find A...

    Text Solution

    |

  11. The x and y-components of vector A are 4 m and 6 m respectively. The x...

    Text Solution

    |

  12. Three vectors which are coplanar with respect to a certain rectangular...

    Text Solution

    |

  13. Let vecA and vecB be the two vectors of magnitude 10 unit each. If the...

    Text Solution

    |

  14. The resultant of vectors vec(OA) and vec(OB) is peerpendicular to vec(...

    Text Solution

    |

  15. Find the components of a vector A = 2hati + 3hatj along the direction...

    Text Solution

    |

  16. If two vectors are A = 2hati + hatj - hatk and B = hatj - 4hatk. By ca...

    Text Solution

    |

  17. The resultant of two vector A and B is at right angles to A and its ma...

    Text Solution

    |

  18. Four forces of magnitude P, 2P, 3P and 4P act along the four sides of ...

    Text Solution

    |

  19. If P + Q = R and P - Q = S, prove that R^2 + S^2 = 2(P^2 + Q^2)

    Text Solution

    |

  20. In an Delta ABC as showin in Fig. 2 . (2) .71 (a) prove that a/(sin...

    Text Solution

    |