Home
Class 12
MATHS
Let g: R -> R be a differentiable functi...

Let `g: R -> R` be a differentiable function with `g(0) = 0,g'(1)=0,g'(1)!=0`.Let `f(x)={x/|x|g(x), 0 !=0 and
0,x=0` and `h(x)=e^(|x|)` for all `x in R`. Let `(foh)(x)` denote `f(h(x)) and (hof)(x)` denote `h(f(x))`. Then which of the following is (are) true?
(A) `f` is differentiable at x= 0.
(B) `h` is differentiable at x= 0.
(C) `foh` is differentiable at x= 0.
(D) `hof` is differentiable at x= 0.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g: R -> R be a differentiable function with g(0) = 0,,g'(1)!=0 .Let f(x)={x/|x|g(x), 0 !=0 and 0,x=0 and h(x)=e^(|x|) for all x in R . Let (foh)(x) denote f(h(x)) and (hof)(x) denote h(f(x)) . Then which of the following is (are) true? A. f is differentiable at x = 0 B. h is differentiable at x = 0 C. f o h is differentiable at x = 0 D. h o f is differentiable at x = 0

Let g: RR to RR be a differentiable function with g(0)=0,g'(0)=0 and g'(1)ne0 . Let f(x)={{:((x)/(|x|)g(x)", "xne0),(0", "x =0):}" and "h(x)=e^(|x|)" for all "x inRR. Let ("foh")(x) denote f(h(x)) and ("hof")(x) denote h(f(x)) . Then which of the following is (are) true?

Let f : (-1,1) to R be a differentiable function with f(0) =-1 and f'(0)=1 Let g(x)= [f(f(2x)+1)]^2 . Then g'(0)=

Statement I f(x) = |x| sin x is differentiable at x = 0. Statement II If g(x) is not differentiable at x = a and h(x) is differentiable at x = a, then g(x).h(x) cannot be differentiable at x = a

Statement I f(x) = |x| sin x is differentiable at x = 0. Statement II If g(x) is not differentiable at x = a and h(x) is differentiable at x = a, then g(x).h(x) cannot be differentiable at x = a

Statement I f(x) = |x| sin x is differentiable at x = 0. Statement II If g(x) is not differentiable at x = a and h(x) is differentiable at x = a, then g(x).h(x) cannot be differentiable at x = a