Home
Class 12
MATHS
I fy=xlog[(a x)^(- 1)+a^(- 1)],prove tha...

`I fy=xlog[(a x)^(- 1)+a^(- 1)]`,prove that `x(x+1)(d^2y)/(dx^2)+x(dy)/(dx)=y-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=xlog[(ax)^-1+a^-1] , prove that : x (x+1) (d^2y) / (dx^2) + xdy/dx = y-1

If y=xln((a x)^(-1)+a^(-1)) prove that x(x+1)(d^2y)/(dx^2)+(dy)/(dx)=y-1

If y=x ln((ax)^(-1)+a^(-1)) prove that x(x+1)(d^(2)y)/(dx^(2))+(dy)/(dx)=y=1

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2