Home
Class 11
PHYSICS
Find the centre of mass of a uniform pla...

Find the centre of mass of a uniform plate having semicircular inner and outer boundaries of radii `R_1 and R_2`.

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`y_(CM)=(A_1y_1-A_2y_2)/(A_1-A_2)`
`=((pib^2//2)(4b//3pi)-(pia^2//2)(4a//3pi))/((pib^2//2)-(pia^2//2))`
`=(4)/(3pi)[(b^3-a^3)/(b^2-a^2)]`
`=(4)/(3pi){(a^2+ab+b^2)/(a+b)}`
Promotional Banner

Topper's Solved these Questions

  • CENTRE OF MASS, LINEAR MOMENTUM AND COLLISION

    DC PANDEY|Exercise Exercise 11.2|6 Videos
  • CENTRE OF MASS, LINEAR MOMENTUM AND COLLISION

    DC PANDEY|Exercise Exercise 11.3|7 Videos
  • CENTRE OF MASS, LINEAR MOMENTUM AND COLLISION

    DC PANDEY|Exercise MiscellaneousExamples|9 Videos
  • CENTRE OF MASS, IMPULSE AND MOMENTUM

    DC PANDEY|Exercise Comprehension type questions|15 Videos
  • CIRCULAR MOTION

    DC PANDEY|Exercise Medical entrances s gallery|19 Videos

Similar Questions

Explore conceptually related problems

Find the distance of centre of mass of a uniform plate having semicircular inner and other boundaries of radii a and b from the centre O.

Find the centre of mass of a uniform semicircular ring of radius R and mass M .

Find the centre of mass of a homogeneous semicircular plate of radius a.

Find the location of centre of mass of a uniform semicirular plate of radius R and mass M .

Determine the centre of mass of a uniform hemisphere of radius R.

Find the coordination of the centre of mass of a uniform semicircular wire of radius R and mass M.

The moment of inertia of a uniform semicircular disc of mass disc through the centre is

Find the coordinates of centre of mass of a uniform semicircular closed wire frame with respect to the origin which is at its centre. Radius of the circular portion is R

Find the centre of mass of a thin, uniform disc of radius R from which a small concentric disc of radius r is cut.

In the figure shown, find out centre of mass of a system of a uniform circular plate of radius 3R from O in which a hole of radius R is cut whose centre is at 2R distance from the centre of large circular plate