Home
Class 11
PHYSICS
A cylindrical steel wire of 3 m length ...

A cylindrical steel wire of `3 m` length is to stretch no more than `0.2 cm` when a tensile force of `400 N` is applied to each end of the wire. What minimum diameter is required for the wire ? `Y_(steel) = 2.1xx10^(11) N//m^2`

A

`2.91 mm`

B

`1.56 mm`

C

`1.91 mm`

D

`2.6mm`

Text Solution

Verified by Experts

The correct Answer is:
C

`Deltal = (Fl)/(AY) = (Fl)/((pid^(2)//4)Y)`
`:. d = sqrt((4 Fl)/(pi(Deltal)Y))`
` = sqrt((4xx400xx3)/(3.14xx0.2xx10^(-2)xx2.1xx10^(11)))`
`= 1.91 xx10^(-3) m = 1.91 mm`
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY

    DC PANDEY|Exercise Level 2 Single Correct|10 Videos
  • ELASTICITY

    DC PANDEY|Exercise Level 2 More Than One Correct|8 Videos
  • ELASTICITY

    DC PANDEY|Exercise Level 1 Single Correct|16 Videos
  • CURRENT ELECTRICITY

    DC PANDEY|Exercise All Questions|434 Videos
  • ELECTROSTATICS

    DC PANDEY|Exercise Integer|17 Videos

Similar Questions

Explore conceptually related problems

A steel wire of diameter 1 mm, and length 2 m is stretched by applying a force of 2.2 kg wt. the extension produced in the wire is

A steel wire of diameter 1 mm, and length 2 m is stretched by applying a force of 2.2 kg wt. the strain is

A steel wire of 2mm in diameter is stretched by applying a force of 72N . Stress in the wire is

A wire of length 1m and area of cross section 4 xx 10^(-8) m^(2) increases in length by 0.2 cm when a force of 16 N is applied. Value of Y for the material of the wire will be

A unifrom steel wire of length 6 m and area of cross section 2 mm^(2) is elastically strectched through 3 mm. Calculate the energy stored in the wire. [Y_("steel") = 2xx 10^(11) N//m^(2)]

The length of a steel wire is l_(1) when the stretching force is T_(1) and l_(2) when the stretching force is T_(2) . The natural length of the wire is

What should be the weight suspended from the end of a steel wire 2 m in length and w mm in diameter to increase the length by 1 mm ? (Y=19xx10^(11)N//m^(2))

A steel wire of length 7 m and cross section 1 mm^(2) I suspended from a rigid support, with a steel weight of volume 10^(3) cm^(3) hanging from its other end. Find the decrease in the length of the wire when the steel weight is completely immersed in water. Y_("steel") = 2xx 10^(11) N//m^(2) density of water = 10^(3) kg//m^(3) ]

A steel wire of length 2.5 m and area of cross section 1.25 mm^(2) , when it is stretched by a force of 40 N and Y for steel is 2xx10^(11)N//m^(2) . The extension produced in a steel wire is