Consider an anular ring of radius `r` and of thickness dr on this disc. Charge within this ring,
As ring rotates with angular velocity `omega`, the equivalent current is
`i=(dq)("frequency")`
`(sigma)(2pidr)(omega(2pi)) or i=sigmadrdr`
`=(sigma)(2pidr)(omega(2pi))or i=sigmardr`
Magnetic moment of this anulalr ring,
`M=iA=(sigmadr)(pir^2) ("along the axis of rotation")`
Torque on this ring
`dtau=MBsin90^@=(sigmapir^3B)dr`
`:.` Total torque on the disc is `tau=int_0^Rtau(sigmaomegapiB)int_0^Rr^3dr`
`=(sigmaomegaBR^4)/4`