Home
Class 12
MATHS
If I=int(1/ e)^e|logx|(dx)/(x^2) ,then ...

If `I=int_(1/ e)^e|logx|(dx)/(x^2)` ,then `I` equals (A) 2 (B) `2/e` (C) `2(1-1/e)` (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

if I=int_(1/e)^e abslogx dx/x^2 then I equals

If I=int_(1//e)^(e)|logx|(dx)/(x^(2)) , then I equals a)2 b) 2//e c) 2(1-1//e) d)0

int_(1)^(e)((logx)^(2))/(x)dx=?

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(e^(-1))^(e^(2))|(logx)/(x)|dx=

If y=(logx)^(2) , then (dy)/(dx) at x=e is equal to a)2 b) e/2 c)e d) 2/e

I=int(e^(2x)-1)/(e^(2x))dx

If int(dx)/(e^(2x)+e^(-2x))=A/842tan^(- 1)e^(2x)+C then A equals ...

The value of int_(1/e^2)^e abs(logx)dx is