To solve the problem step by step, we need to analyze the fusion processes occurring in the star and calculate the time it takes for the deuteron supply to be exhausted.
### Step 1: Understand the Fusion Processes
The star undergoes two fusion reactions:
1. \( _1H^2 + _1H^2 \rightarrow _1H^3 + p \) (Deuteron fusion producing Tritium and a Proton)
2. \( _1H^2 + _1H^3 \rightarrow _2He^4 + n \) (Deuteron and Tritium fusion producing Helium and a Neutron)
### Step 2: Write the Overall Reaction
By combining the two reactions, we can derive an overall reaction:
- From the first reaction, we consume 2 deuterons and produce 1 tritium and 1 proton.
- From the second reaction, we consume 1 deuteron and 1 tritium to produce 1 helium and 1 neutron.
Combining these gives:
\[ 3 \, _1H^2 \rightarrow 2 \, _2He^4 + 1 \, p + 1 \, n \]
### Step 3: Calculate the Mass Defect
Now, we calculate the mass defect \( \Delta M \):
- Mass of reactants: \( 3 \times M(H^2) = 3 \times 2.014 \, \text{amu} = 6.042 \, \text{amu} \)
- Mass of products:
- Mass of Helium: \( 4.001 \, \text{amu} \)
- Mass of Proton: \( 1.007 \, \text{amu} \)
- Mass of Neutron: \( 1.008 \, \text{amu} \)
Thus, the total mass of products is:
\[ M_{products} = 4.001 + 1.007 + 1.008 = 6.016 \, \text{amu} \]
Now, calculate the mass defect:
\[ \Delta M = M_{reactants} - M_{products} = 6.042 - 6.016 = 0.026 \, \text{amu} \]
### Step 4: Convert Mass Defect to Energy
Using the conversion factor \( 1 \, \text{amu} \approx 931 \, \text{MeV/c}^2 \):
\[ E = \Delta M \times 931 \, \text{MeV} = 0.026 \times 931 \approx 24.206 \, \text{MeV} \]
### Step 5: Calculate Total Energy Released
Since 3 deuterons produce this energy, the energy released per deuteron is:
\[ E_{per \, deuteron} = \frac{24.206}{3} \approx 8.068 \, \text{MeV} \]
For \( 10^{40} \) deuterons, the total energy released is:
\[ E_{total} = 8.068 \times 10^{40} \, \text{MeV} \]
### Step 6: Convert Energy to Joules
To convert MeV to Joules, use the conversion \( 1 \, \text{MeV} = 1.6 \times 10^{-13} \, \text{J} \):
\[ E_{total} = 8.068 \times 10^{40} \times 1.6 \times 10^{-13} \approx 1.29 \times 10^{28} \, \text{J} \]
### Step 7: Calculate Time for Deuteron Exhaustion
Power is defined as energy per unit time:
\[ P = \frac{E}{T} \]
Thus, the time \( T \) can be calculated as:
\[ T = \frac{E}{P} = \frac{1.29 \times 10^{28} \, \text{J}}{10^{16} \, \text{W}} = 1.29 \times 10^{12} \, \text{s} \]
### Conclusion
The time required to exhaust the deuteron supply is of the order of \( 10^{12} \, \text{s} \).
### Final Answer
(c) \( 10^{12} \, \text{s} \)
---