Home
Class 12
PHYSICS
On bombardment of U^235 by slow neutrons...

On bombardment of `U^235` by slow neutrons, 200 MeV energy is released. If the power output of atomic reactor is 1.6 MW, then the rate of fission will be

A

(a) `5xx10^16` per second

B

(b) `10xx10^16` per second

C

(c) `15xx10^16` per second

D

(d) `20xx10^16` per second

Text Solution

Verified by Experts

The correct Answer is:
A

Let N nuclei decay per second. Then,
`N(200xx1.6xx10^-13)=1.6xx10^6`
Solving we get `N=5xx10^16` per sec
Promotional Banner

Topper's Solved these Questions

  • MODERN PHYSICS - 2

    DC PANDEY|Exercise Level 1 Subjective|16 Videos
  • MODERN PHYSICS - 2

    DC PANDEY|Exercise Level 1 Subjective Questions|1 Videos
  • MODERN PHYSICS - 2

    DC PANDEY|Exercise Assertion And Reason|11 Videos
  • MODERN PHYSICS - 1

    DC PANDEY|Exercise Level 2 Subjective|23 Videos
  • NUCLEI

    DC PANDEY|Exercise C MADICAL ENTRANCES GALLERY|46 Videos

Similar Questions

Explore conceptually related problems

In the nuclear fission of ""_(92)U^(235) , 200 MeV of energy is released per fission. Calculate the output power of the reactor if 3 kg of fuel is used in 40 days.

When an atom of ._(92)U^(235) undergo fission, about 200 MeV energy is released Suppose that a reactor using ._(92)U^(235) has an output of 700 MW and is 20% efficient (i) How much uranium atoms does it consume in one day ? (ii) What mass of uranium does it consume each day ?

How much energy is released when 2 mole of U^(235) is fission :

Assuming that 200MeV of energy is released per fission of uranium atom, find the number of fission per second required to release one kilowatt power.

An explosion of atomic bomb releases an energy of 7.6xx10^(13)J . If 200 MeV energy is released on fission of one .^(235)U atom calculate (i) the number of uranium atoms undergoing fission. (ii) the mass of uranium used in the atom bomb

An atomic power nuclear reactor can deliver 300 MW . The energy released due to fission of each nucleus of uranium atom U^238 is 170 MeV . The number of uranium atoms fissioned per hour will be.

(a) Calculate the energy released by the fission of 2g of ._(92)U^(235) in kWh . Given that the energy released per fission is 200MeV . (b) Assuming that 200MeV of enrgy is released per fission of uranium atom, find the number of fissions per second required to released 1 kilowatt power. (c) Find the amount of energy produced in joules due to fission of 1g of ._(92)U^(235) assuming that 0.1% of mass is transformed into enrgy. ._(92)U^(235) = 235 amu , Avogadro number = 6.023 xx 10^(23)

1.00 kg of .^(235)U undergoes fission process. If energy released per event is 200 MeV , then the total energy released is

DC PANDEY-MODERN PHYSICS - 2-Level 1 Objective
  1. For uranium nucleus how does its mass vary with volume?

    Text Solution

    |

  2. Order of magnitude of density of uranium nucleus is , [m = 1.67 xx 10^...

    Text Solution

    |

  3. During a beta decay

    Text Solution

    |

  4. In the nucleus of helium if F1 is the net force between two protons, F...

    Text Solution

    |

  5. What are the respective number of alpha and beta-particles emitted in ...

    Text Solution

    |

  6. If an atom of 92^235U, after absorbing a slow neutron, undergoes fissi...

    Text Solution

    |

  7. Nucleus A is converted into C through the following reactions, ArarrB+...

    Text Solution

    |

  8. The binding energy of alpha-particle is ( if mp=1.00785u, mn=1.00866...

    Text Solution

    |

  9. 7/8th of the active nuclei present in a radioactive sample has decayed...

    Text Solution

    |

  10. A radioactive element disintegrates for a time interval equal to its m...

    Text Solution

    |

  11. Starting with a sample of pure ^66Cu, 3/4 of it decays into Zn in 15 m...

    Text Solution

    |

  12. A sample of radioactive substance loses half of its activity in 4 days...

    Text Solution

    |

  13. On bombardment of U^235 by slow neutrons, 200 MeV energy is released. ...

    Text Solution

    |

  14. Atomic masses of two heavy atoms are A1 and A2. Ratio of their respect...

    Text Solution

    |

  15. A radioactive element is disintegrating having half-life 6.93 s. The f...

    Text Solution

    |

  16. The activity of a radioactive sample goes down to about 6% in a time o...

    Text Solution

    |

  17. What is the probability of a radioactive nucleus to survive one mean l...

    Text Solution

    |