Home
Class 9
MATHS
यदि एक समांतर चतुर्भुज के विकर्ण बराबर ह...

यदि एक समांतर चतुर्भुज के विकर्ण बराबर हों, तो दर्शाइए कि वह एक आयत हैं

लिखित उत्तर

Verified by Experts

दिया है: ABCD एक समांतर चतुर्भुज है।
जिसके विकर्ण बराबर हैं।

अर्थात `AC=BD`
सिद्ध करना है: `||^(gm)ABCD` एक आयत है।
प्रमाणः `DeltaABC` और `DeltaDCB` में
`AB=DC` [`||^(gm)` की सम्मुख भुजाएं]
`BC=BC`[उभयनिष्ठ]
`AC=BD` [दिया है]
`:.DeltaABD~=DeltaDCB` [S-S-S सर्वांगसमता]
`:./_ABC=/_DCB` [CPCT]
परंतु ये तिर्यक रेखा BC और समांतर रेखाओं AB तथा DC द्वारा बनाये गये एक ही ओर के अंतः कोण हैं।
`:./_ABC+/_DCB=180^(@)`
अतः `/_ABC=/_DCB=90^(@)` [`:'/_ABC=/_DCB`]
`:.||^(gm)ABCD` एक आयत है।
Promotional Banner

टॉपर्स ने हल किए ये सवाल

  • समांतर चतुर्भुज

    KC SINHA|Exercise अतिलघु उत्तरीय प्रश्न (समांतर चमुर्भुज, आयत, वर्ग तथा समचतुर्भुज से संबंधित परिभाषाओं, प्रमेयों तथा उपप्रमेयों के सीधे प्रयोग पर आधारित प्रश्नः)|16 Videos
  • समांतर चतुर्भुज

    KC SINHA|Exercise लघु उत्तरीय प्रश्न|4 Videos
  • वृत्त

    KC SINHA|Exercise वस्तुनिष्ठ प्रश्न|17 Videos
  • समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल

    KC SINHA|Exercise वस्तुनिष्ट प्रश्न|7 Videos