Home
Class 12
MATHS
A function f is continuous for all x (an...

A function `f` is continuous for all `x` (and not everywhere zero) such that `f^2(x)=int_0^xf(t)(cost)/(2+sint)dtdot` Then `f(x)` is `1/2 1n((x+cosx)/2); x!=0` `1/2 1n(3/(x+cosx)); x!=0` `1/2 1n((2+sinx)/2); x!=npi,n in I` `(cosx+sinx)/(2+sinx); x!=npi+(3pi)/4,n in I`

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f is continuous for all x (and not everywhere zero) such that f^2(x)=int_0^xf(t)(cost)/(2+sint)dtdot Then f(x) is (a) 1/2 1n((x+cosx)/2); x!=0 (b) 1/2 1n(3/(x+cosx)); x!=0 (c) 1/2 1n((2+sinx)/2); x!=npi,n in I (d) (cosx+sinx)/(2+sinx); x!=npi+(3pi)/4,n in I

A function f is continuous for all x (and not everywhere zero) such that f^2(x)=int_0^xf(t)(cost)/(2+sint)dtdot Then f(x) is (a) 1/2 1n((x+cosx)/2); x!=0 (b) 1/2 1n(3/(x+cosx)); x!=0 (c) 1/2 1n((2+sinx)/2); x!=npi,n in I (d) (cosx+sinx)/(2+sinx); x!=npi+(3pi)/4,n in I

A function f is continuous for all x (and not everywhere zero) such that f^(2)(x)=int_(0)^(x)f(t)(cos t)/(2+sin t)dt. Then f(x) is (1)/(2)ln((x+cos x)/(2));x!=0(1)/(2)1n((3)/(x+cos x));x!=0(1)/(2)ln((2+sin x)/(2));x!=n pi,n in I(cos x+sin x)/(2+sin x);x!=n pi+(3 pi)/(4),n in I

If f(x)=(1-cosx)/(1-sinx)," then: "f'((pi)/(2)) is

The function f(x)=1+|cosx| is (a) continuous no where (b) continuous everywhere (c) not differentiable at x=0 (d) not differentiable at x=npi,\ \ n in Z

If x ne (npi)/2, n in I and (cosx)^(sin^(2)x-3sinx+2)=1 , then find the general solutions of x.

If x!=(npi)/2,\ n\ in I and ( cosx )^(sin ^2x-3sinx+2)=1, then find the general solution of xdot

If x!=(npi)/2,\ n\ in I and ( cosx )^(sin ^2x-3sinx+2)=1, then find the general solution of xdot