Home
Class 12
MATHS
lim(x->0) 1/x [int(y->a)e^(sin^2t) dt-in...

`lim_(x->0) 1/x [int_(y->a)e^(sin^2t) dt-int_(x+y->a)e^(sin^2t)dt]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(1)/(x)[int_y^ae^(sin^2t)dt-int_(x+y)^ae^(sin^2t)dt] is equal to

(lim)_(nvecoo)1/x[int_y^a e^(sin^2t))dt-int_(x+y)^a e^(sin^2t))dt-]i se q u a lto (0,1] (b) [1,oo) (0,oo) (d) none of these

(lim)_(nvecoo)1/x[int_y^a e^(sin^2t))dt-int_(x+y)^a e^(sin^2t))dt-]i se q u a lto (0,1] (b) [1,oo) (0,oo) (d) none of these

lim_(x rarr 0) [int_(y)^(a) e^(sin^(2)t) dt - int_(x + y)^(a) e^(sin^(2)t) dt] div x is equal to :

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to