Home
Class 12
MATHS
Given Im=int1^e(logx)^mdx ,t h e np rov...

Given `I_m=int_1^e(logx)^mdx ,t h e np rov et h a t(I_m)/(1-m)+m I_(m-2)=e`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given I_m=int_1^e(logx)^mdx ,then prove that (I_m)/(1-m)+m I_(m-2)=e

Given I_m=int_1^e(logx)^mdx ,then prove that (I_m)/(1-m)+m I_(m-2)=e

Given I_(m)=int_(1)^(e)(log x)^(m)dx, then prove that (I_(m))/(1-m)+mI_(m-2)=e

If I_(m)=int_(1)^(e)(log_(e)x)^(m)dx , then prove that, I_(m)=e-mI_(m-1)

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

If I_(m)=int_(1)^(e)(logx)^(m)dx , show that, I_(m)+mI_(m-1)lt3 .

If I_m=int_1^x(logx)^mdx satisfies the relation (I_m)=k-l I_(m-1) then