Home
Class 12
MATHS
[" 1."4f(a+b):(a-b)=5:1," do "],[quad (a...

[" 1."4f(a+b):(a-b)=5:1," do "],[quad (a^(2)-b^(2)):(a^(2)+b^(2))" an "417:(7)/(8)]

Promotional Banner

Similar Questions

Explore conceptually related problems

(-8b^(2)+4b-8)+(-2b^(2)-5b-1)

What is (1)/(a-b) -(1)/(a+b) -(2b)/(a^(2)+b^(2))-(4b^(3))/(a^(4)+b^(4)) -(8b^(7))/(a^(8)-b^(8)) equal to ?

If A = ({:(2, 7),(1, 4):})" and B" = ({:(5, -7), (-2, 3):}) find AB, (AB)^(-1), A^(-1), B^(-1) " and " B^(-1) A^(1) . What do you notice?

If (4b^(2)+(1)/(b^(2)))=2, then (8b^(3)+(1)/(b^(3)))=? (a) 0 (b) 1 (c) 2 (d) 5

The factors of 8a^3+b^3-6a b+1 are (a) (2a+b-1)(4a^2+b^2+1-3a b-2a) (b) (2a-b+1)(4a^2+b^2-4a b+1-2a+b) (c) (2a+b+1)(4a^2+b^2+1-2a b-b-2a) (d) (2a-1+b)(4a^2+1-4a-b-2a b)

a#b=a^(2)+b-1 a$b=a^(2)+b^(2)+1 "Max (a,b)"=|a+b| "Min (a, b)"=|a-b| Find the value of "Min "[(1#2)$3,4#(5$6)]$" Max "(6#7),(7#8)] :

Factorise : 7b^(2) - 8b +1

Given that P(A)=(1)/(2),P(B)=(1)/(3),P(A nn B)=(1)/(4) then P((A')/(B'))=(A)(1)/(2)(B)(7)/(8)(C)(5)/(8)(D)(2)/(3)