Home
Class 6
MATHS
[" 21"f(2)(a:b)/(-a+a+2)=(b*c)/(b)=(a)/(...

[" 21"f_(2)(a:b)/(-a+a+2)=(b*c)/(b)=(a)/(b)" it "a^(4)" : "b],[" (1) "ac:b^(2)quad " (2) "a^(2):c^(2)],[" (3) "c^(2):a^(2)quad " (A) "b^(2):ac]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a:b=b:c,(:thenbackslash a^(4):b^(4) would be equal to ac:b^(2) b.a^(2):c^(2) c.c^(2):a^(2) d.b^(2):ac

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and a^(2)+b^(2)+c^(2)=1 , then A^(2)=

If (a^(2)-bc)/(a^(2) +bc) + (b^(2)-ac)/(b^(2) + ac) + (c^(2)-ab)/(c^(2)+ab)= 1 then find (a^(2))/(a^(2) + bc) + (b^(2))/(b^(2) + ac) + (c^(2))/(c^(2) +ab)= ?

The value of the determinant |(bc,ac,ab),(a,b,c),(a^(3),b^(3),c^(3))| is a)(a + b + c) b)a + b + c -ab c) (a^(2) - b^(2))(b^(2) - c^(2)) (c^(2) - a^(2)) d) a^2+b^2+c^2

Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2))|=4a^(2)b^(2)c^(2).