Home
Class 12
MATHS
[" (c) "2x^(5)" .If "T(0),T(1),T(2),...,...

[" (c) "2x^(5)" .If "T_(0),T_(1),T_(2),...,T_(n)" represent the terms in the expansionor "],[(x+a)^(n)," then "(T_(0)-T_(2)+T_(4)-...)^(2)+(T_(1)-T_(3)+T_(5)-...)^(2)],[" is equal to "],[[" (a) "(x^(2)+a^(2))," (b) "(x^(2)+a^(2))^(n)],[" (c) "(x^(2)+a^(2))^(1/n)," (d) "(x^(2)+a^(2))^(-1/n)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If T_(0),T_(1),T_(2),...,T_(n) represent the terms in the expansion of (x+a)^(n), then find the value of (T_(0)-T_(2)+T_(4)-...)^(2)+(T_(1)-T_(3)+T_(5)-...)^(2)n in N

If T_0,T_1, T_2,.....T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-....)^2+(T_1-T_3+T_5-.....)^2n in Ndot

If T_0,T_1, T_2, ,T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot

If T_0,T_1, T_2, ,T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot

If T_0, T_1, T_2, … T_n represent the terms in the expansion of (x+a)^n , then the value of (T_0-T_2+T_4-T_6+…)^2+(T_1-T_3 +T_5-….)^2 is

If t_0,t_1, t_2,...,t_n are the terms in the expansion of (x+a)^n then prove that (t_0-t_2+t_4-...)^2+(t_1-t_3+t_5-...)^2=(x^2+a^2)^n .