Home
Class 8
MATHS
:-a^(2)-2ab+b^(2)-c^(2)...

:-a^(2)-2ab+b^(2)-c^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+px+1 is a factor of ax^(3)+bx+c then a a^(2)+c^(2)=-ab b) a^(2)+c^(2)ab c) a^(2)-c^(2)=ab d a^(2)-c^(2)=-ab

If x^(2)+px=1 is a factor of the expression ax^(3)+bx=c, then a^(2)-c^(2)=ab b.a^(2)+c^(2)=-ab c.a^(2)-c^(2)=-ab d.none of these

If (x^(2)+px+1) is a factor of (ax^(3)+bx+c), then a^(2)+c^(2)=-ab b.a^(2)-c^(2)=-ab c.a^(2)-c^(2)=abd .none of these

If r and R are radii of the incircle and circum-circle of DeltaABC, then prove that : 8rR{cos ^(2) A//2 +cos ^(2) B//2 +cos ^(2) C//2} =2bc+2ca+2ab-a^(2) -b^(2) -c^(2).

If r and R are radii of the incircle and circum-circle of DeltaABC, then prove that : 8rR{cos ^(2) A//2 +cos ^(2) B//2 +cos ^(2) C//2} =2bc+2ca+2ab-a^(2) -b^(2) -c^(2).

If r and R are radii of the incircle and circum-circle of DeltaABC, then prove that : 8rR{cos ^(2) A//2 +cos ^(2) B//2 +cos ^(2) C//2} =2bc+2ca+2ab-a^(2) -b^(2) -c^(2).

If r and R are radii of the incircle and circum-circle of DeltaABC, then prove that : 8rR{cos ^(2) A//2 +cos ^(2) B//2 +cos ^(2) C//2} =2bc+2ca+2ab-a^(2) -b^(2) -c^(2).

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

factorize : a^2+2ab +b^2-9c^2