Home
Class 12
MATHS
The relation R defined in A= {1, 2, 3} b...

The relation R defined in `A= {1, 2, 3}` by `aRb` if `|a^2-b^2| leq 5`. Which of the following is faise

A

R = {(1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2)}

B

`R^(-1)=R`

C

Domain of R = {1, 2, 3}

D

Range of R = {5}

Text Solution

Verified by Experts

The correct Answer is:
D

Let a = 1
Then, `|a^(2)-b^(2)|le5implies|1-b^(2)|le5`
`implies|b^(2)-1|le5impliesb=1,2`
Let a = 2
Then, `|a^(2)-b^(2)|le5`
`implies |4-b^(2)|le5implies|b^(2)-4|le5`
`therefore b=1,2,3`
Let a = 3
Then, `|a^(2)-b^(2)|le5`
`implies |9-b^(2)|le5implies|b^(2)-9|le5impliesb=2,3`
`therefore R={(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)}`
`R^(-1)={(y,x):(x,y)inR}`
`={(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3)}=R`
Domain of R = `{x:(x,y)inR}={1,2,3}`
Range of `R={y:(x,y)inR}={1,2,3}`
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|11 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The relation R defined in A={1,2,3} by aRb if |a^(2)-b^(2)|<=5. Which of the following is faise

The relation R defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b): |a^(2)-b^(2)|lt16} is given by

If the relation R be defined on the set A={1,2,3,4,5} by R={(a,b): |a^(2)-b^(2)|lt 8}. Then, R is given by …….. .

A relation R in S = {1, 2, 3} is defined as R = {(1, 1),(2,2),(1,2),(3,3)}. Which of the following elements (s) must be added to make R an equivalence relation ?

Let A be a set of compartments in a train. Then the relation R defined on A as aRb iff ''a and b have the link between them'', then which of the following is true for R?

The relation R defined on the set A = {1,2,3,4, 5} by R ={(x, y)} : |x^(2) -y^(2) | lt 16 } is given by