Home
Class 12
MATHS
If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=...

If `f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]`. Then the value of f(x).g(x).h(x) is

A

6

B

-1

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(x) \cdot g(x) \cdot h(x) \) where: 1. \( f(x) = \frac{1}{1-x} \) 2. \( g(x) = f(f(x)) \) 3. \( h(x) = f(f(f(x))) \) Let's go through the calculations step by step. ### Step 1: Calculate \( f(x) \) Given: \[ f(x) = \frac{1}{1-x} \] ### Step 2: Calculate \( g(x) = f(f(x)) \) First, we need to find \( f(f(x)) \): \[ f(f(x)) = f\left(\frac{1}{1-x}\right) \] Now, substitute \( \frac{1}{1-x} \) into \( f(x) \): \[ f\left(\frac{1}{1-x}\right) = \frac{1}{1 - \frac{1}{1-x}} \] Simplifying the denominator: \[ 1 - \frac{1}{1-x} = \frac{(1-x) - 1}{1-x} = \frac{-x}{1-x} \] Thus, \[ f(f(x)) = \frac{1}{\frac{-x}{1-x}} = \frac{1-x}{-x} = \frac{x-1}{x} \] So, we have: \[ g(x) = \frac{x-1}{x} \] ### Step 3: Calculate \( h(x) = f(f(f(x))) \) Now, we need to find \( f(f(f(x))) = f(g(x)) = f\left(\frac{x-1}{x}\right) \): \[ f\left(\frac{x-1}{x}\right) = \frac{1}{1 - \frac{x-1}{x}} \] Simplifying the denominator: \[ 1 - \frac{x-1}{x} = \frac{x - (x-1)}{x} = \frac{1}{x} \] Thus, \[ f(f(f(x))) = \frac{1}{\frac{1}{x}} = x \] So, we have: \[ h(x) = x \] ### Step 4: Calculate \( f(x) \cdot g(x) \cdot h(x) \) Now we can find the product: \[ f(x) \cdot g(x) \cdot h(x) = \left(\frac{1}{1-x}\right) \cdot \left(\frac{x-1}{x}\right) \cdot x \] Simplifying this: \[ = \frac{1}{1-x} \cdot \frac{x-1}{x} \cdot x = \frac{(x-1)}{(1-x)} = -1 \] ### Final Answer Thus, the value of \( f(x) \cdot g(x) \cdot h(x) \) is: \[ \boxed{-1} \]

To solve the problem, we need to find the value of \( f(x) \cdot g(x) \cdot h(x) \) where: 1. \( f(x) = \frac{1}{1-x} \) 2. \( g(x) = f(f(x)) \) 3. \( h(x) = f(f(f(x))) \) Let's go through the calculations step by step. ...
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|11 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Given f(x)=(1)/(1-x),g(x)=f{f(x)} and h(x)=f{f{f(x)}} then the value of f(x)g(x)h(x) is

Given f(x) = (1)/((1-x)) , g(x) = f{f(x)} and h(x) = f{f{f(x)}}, then the value of f(x) g(x) h(x) is

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

If f(x)=(1)/(2-x)and g(x)=(f(f(x)))/(3f(f(x))-1) then the value(s) of x at which g(x) is discontinuous is/are

If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=(x+1)/(x-1),x!=1 then (f(f(f(f(x)))))=f(x)