Home
Class 12
MATHS
If A ={ theta : 2cos^2 theta + sintheta ...

If `A ={ theta : 2cos^2 theta + sintheta <=2}` , and `B = {theta: pi/2<=theta<= 3pi/2}` , then the region for `(AnnB)` is

Text Solution

Verified by Experts

`because 2cos^(2)theta+sinthetale2`
`therefore 2(1-sin^(2)theta)+sinthetale2`
`implies 2sin^(2)theta-sinthetage0`
`implies sintheta(2sintheta-1)ge0`
`implies sintheta(sintheta-(1)/(2))ge0`
`therefore sinthetale0andsinthetage(1)/(2)`
Now, the values of `theta` which lie in teh interval `(pi)/(2)lethetale(3pi)/(2)[because B={theta:(pi)/(2)lethetale(3pi)/(2)}]`
So, `theta` satisfy `sin theta le 0` in the interval `(pi)/(2)lethetale(5pi)/(6)`.
`therefore AnnB={theta:pilethetale(3pi)/(2)}`
and `AnnB={theta:(pi)/(2)lethetale(5pi)/(6)}`
Hence, `AnnB={theta:(pi)/(2)lethetale(5pi)/(6)orpilethetale(3pi)/(2)}`
`={theta:thetain[(pi)/(2)(5pi)/(6)]uu[pi,(3pi)/(2)]}`
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|11 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

2-cos^(2)theta =3 sintheta costheta , sintheta ne cos theta , then the value of tan theta is

If sin theta_1 + sin theta_2 + sintheta_3 =3 then cos theta_1 + cos theta_2 + costheta_3 is equal to

Prove each of the following identities : (i) (sec theta -1)/(sec theta +1) =(sin^(2) theta)/((1+ cos theta)^(2) ) (ii) (sec theta - tan theta)/(sec theta + tan theta) = (cos^(2) theta)/((1+ sintheta)^(2))

The value of (2(sin2theta+2cos^2theta-1))/(costheta-sintheta-cos3theta+sin3theta) is adot costheta b. sectheta c. cosectheta d. sintheta

If A=[(cos^2theta,costheta sintheta),(cos theta sintheta, sin^2theta)] and B=[(cos^2 phi, cos phi sin phi),(cos phisinphi,sin^2phi)], show that AB is zero matrix if theta and phi differ by an odd multiple of pi/2.

The possible value of theta in [-pi, pi] satisfying the equation 2(costheta + cos 2theta)+ (1+2costheta)sin 2theta = 2sintheta are

If sintheta + cos theta =1 , then the value of sintheta - costheta is: