Home
Class 12
MATHS
Let f be a function satisfying f(x+y)=f(...

Let f be a function satisfying `f(x+y)=f(x) + f(y)` for all `x,y in R`. If `f (1)= k` then `f(n), n in N` is equal to

A

`k^(n)`

B

nk

C

k

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|3 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|10 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f be a function satisfying f(x+y)=f(x) *f(y) for all x,y, in R. If f (1) =3 then sum_(r=1)^(n) f (r) is equal to

Let f be a non-zero continuous function satisfying f(x+y)=f(x)f(y) for all , x,y in R . If f(2)=9 then f(3) is

If f(x+y)=f(x)+f(y) -xy -1 for all x, y in R and f(1)=1 then f(n)=n, n in N is true if

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

Let f:R rarr R be a function given by f(x+y)=f(x)f(y) for all x,y in R .If f'(0)=2 then f(x) is equal to