Home
Class 12
MATHS
If X""=""{4^n-3n-1"":""n in N}""a n d""...

If `X""=""{4^n-3n-1"":""n in N}""a n d""Y""=""{9(n-1)"": n in N}` , where N is the set of natural numbers, then `XuuY` is equal to (1) N (2) Y - X (3) X (4) Y

A

X

B

Y

C

N

D

Y - X

Text Solution

Verified by Experts

The correct Answer is:
B

Since, `4^(n)-3n-1=(1+3)^(n)-3n-1`
`=(1+.^(n)C_(1).3+.^(n)C_(2).3^(2)+.^(n)C_(3).3^(3)+...+.^(n)C_(n).3^(n))-3n-1`
`=3^(2)(.^(n)C_(2)+.^(n)C_(3).3+...+.^(n)C_(n).3^(n-2))`
`implies 4^(n)-3n-1` is a multiple of 9 for `n ge 2`
For `n = 1, 4^(n) - 3n - 1 = 4 - 3 - 1 = 0`
For `n = 2, 4^(n) - 3n - 1 = 16 - 6 - 1 = 9`
`therefore 4^(n) - 3n - 1` is multiple of 9 for all `n in N`.
It is clear that X contains elements, which are multiples of 9 and Y contains all multiples of 9.
`therefore XsubeY " i.e., " XuuY=Y`
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|15 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If X={4^(n)-3n-1:n in N} and Y={9(n-1):n in N} ,where N is the set of natural numbers,then X uu Y is equal to (1)N(2)Y-X(3)X(4)Y

If X={4^(n)-3n-1 : n in N} and Y={9(n-1) : n in N} , then

If X = {4 ^(n)-2n-1: n in N} and Y={9(n -1) : n in N}, then Xnn Y=

If X={4^(n)-3n-1n in N} and Y={9(n-1):n in N} , then X uu Y is equal to

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={8^(n)-7n-1,n in N} and Y={49(n-1);n in N}, then prove that X is a subset of Y

If X={8^(n)-7n-1:n in N) and Y={49(n-1): n in N}, then

If X={8^n-7n-1:n epsilon N} and Y={49(n-1):n epsilon N} , then