Home
Class 12
MATHS
If veca=hati+hatj+hatk, vecb=4hati+3hatj...

If `veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk` and `vecc=hati+alphahatj+betahatk`
are linearly dependent vectors and `|vecc|=sqrt(3)` then

A

`alpha=1,beta=-1`

B

`alpha=1,beta=+-1`

C

`alpha=1,beta=+-1

D

`alpha+-1,beta=1`

Text Solution

Verified by Experts

The correct Answer is:
D

The given vectors are linearly dependent, hence there exist scalars x,y and z not all zero, such that
`xa+yb+zc=0`
i.e., `x(hati+hatj+hatk)+y(4hati+3hatj+4hatk)+z(hati+alphahatj+betahatk)=0`
i.e., `(x+4y+z)hati+(x+3y+alphaz)hatj+(x+4y+betaz)hatk=0`
`impliesx+4y+z=0, x+3y+alphaz=0,x+4y+betaz=0`
For non-trivial solution `|(1,4,1),(1,3,alpha),(1,4,beta)|=0implies beta=1`
`|c|^(2)=3implies1+alpha^(2)+beta^(2)=3`
`impliesalpha^(2)=2-beta^(2)=2-1=1`
`thereforealpha=+-1`
Trick `|c|=sqrt(1+alpha^(2)+beta^(2))=sqrt(3)`
`implies alpha^(2)+beta^(2)=2`
`because` a,b and c are linearly dependent, hence `|(1,1,1),(4,3,4),(4,alpha,beta)|=0`
`impliesbeta=1`
`thereforealpha^(2)=1impliesalpha=+-1`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk and vecc= hati+hatj-hatk A vector in the plane of veca and vecb whose projections on vecc is 1//sqrt3 is

If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.