Home
Class 12
MATHS
Let O, O' and G be the circumcentre, ort...

Let O, O' and G be the circumcentre, orthocentre and centroid of a `Delta ABC` and S be any point in the plane of the triangle.
Statement -1: `vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O)`
Statement -2: `vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)`

A

`OO'`

B

`2O'O`

C

`2O O'`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

`O'A=O'O=OA`
`O'B=O O'+OB`
`O'C=O'O+OC`
`impliesO' A+O'B + O'C=3O'O+OA+OB+OC`

Since, `OA+OB+OC=O O'=-O'O`
`therefore O'A+O'B+O'C=2O'O`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then vec(SA) + vec(SB)+vec(SC)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

OAB is a given triangle such that vec(OA)=vec(a), vec(OB)=vec(b) . Also C is a point on vec(AB) such that vec(AB)=2vec(BC) . What is vec(AC) equal to ?

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

If S is circumcentre, O is orthocentre of DeltaABC , then vec(SA)+vec(SB)+vec(SC) =

If O is the circumcentre and P the orthocentre ( of Delta ABC, prove that )/(OA)+vec OB+vec OC=vec OP

If G denotes the centroid of Delta ABC, then write the value o vec GA+vec GB+vec GC

Statement 1: In Delta ABC,vec AB+vec BC+vec CA=0 Statement 2: If vec OA=vec a,vec OB=vec b, then vec AB=vec a+vec b

If D E and F be the mid ponts of the sides BC, CA and AB respectively of the /_\ABC and O be any point, then prove that vec(OA)+vec(OB)+vec(OC)=vec(OD)+vec(OE)+vec(OF)