Home
Class 12
MATHS
In a quadrilateral P Q R S , vec P Q= ve...

In a quadrilateral `P Q R S , vec P Q= vec a , vec Q R , vec b , vec S P= vec a- vec b ,M` is the midpoint of ` vec Q Ra n dX` is a point on `S M` such that `S X=4/5S Mdot` Prove that `P ,Xa n dR` are collinear.

A

`PX=(1)/(5)PR`

B

`PX=(3)/(5)PR`

C

`PX=(2)/(5)PR`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

If we take point P as the origin, the position vectors of Q and S are a and b-a respectively.
In `DeltaPQR`, we have

`PR=PQ+QR impliesPR=a+b`
`therefore`Position vector of R=a+b
`impliesPV` or `M=(a+(a+b))/(2)=(a+(1)/(2)b)`
Now, `SX=(4)/(5)SM`
`impliesXM=SM-SX=SM-(4)/(5)SM=(1)/(5)SM`
`thereforeSX:XM=4:1`
`impliesPV` of `X=(4(a+(1)/(2)b)+1(b-a))/(4+1)`
`=(3a+2b)/(5)impliesPX=(3)/(5)(a+b)`
`impliesPX=(3)/(5)PR`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

In a quadrilateral PQRS,vec PQ=vec a,vec QR,vec bR,vec b,vec SP=vec a-vec b,M is the midpoint of vec QR and X is a point on SM such that SX=(4)/(5)SM. Prove that P,X and R are collinear.

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec P+ vec Q = vec R and |vec P| = |vec Q| = | vec R| , then angle between vec P and vec Q is

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

If |vec P xx vec Q|=PQ then the angle between vec P and vec Q is