Home
Class 12
MATHS
Orthocenter of an equilateral triangle A...

Orthocenter of an equilateral triangle ABC is the origin O. If `vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc`, then `vec(AB)+2vec(BC)+3vec(CA)=`

A

3c

B

3a

C

0

D

3b

Text Solution

Verified by Experts

The correct Answer is:
B

For an equilateral triangle, centroid is the samme as orthocentre
`therefore(OA+OB+OC)/(3)=0`
`thereforeOA+OB+OC=0`
Now, `AB+2BC+3CA`
`=OB-OA+2OC-2OB+3OA-3OC`
`=-OB+2OA-OC`
`=(OB+OA+OC)+3OA=3OA=3a`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

OAB is a given triangle such that vec(OA)=vec(a), vec(OB)=vec(b) . Also C is a point on vec(AB) such that vec(AB)=2vec(BC) . What is vec(AC) equal to ?

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b, " then " vec(OA)=

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

In a triangle ABC, if taken in order, consider the following statements 1. vec(AB) + vec(BC) + vec(CA) = vec(0) 2 vec(AB) + vec(BC) - vec(CA) = vec(0) 3. vec(AB)- vec(BC) + vec(CA) = vec(0) 4. vec(BA)- vec(BC) + vec(CA) = vec(0) How many of the above statements are correct?

In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?