Home
Class 12
MATHS
vec a , vec b , vec c are three coplanar...

` vec a , vec b , vec c` are three coplanar unit vectors such that ` vec a+ vec b+ vec c=0.` If three vectors ` vec p , vec q ,a n d vec r` are parallel to ` vec a , vec b ,a n d vec c ,` respectively, and have integral but different magnitudes, then among the following options, `| vec p+ vec q+ vec r|` can take a value equal to a. `1` b. `0` c. `sqrt(3)` d. `2`

A

1

B

0

C

`sqrt(3)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
C, D

Let a,b and c lie in the XY-plane
Let `a=hati,b=-(1)/(2)hati+(sqrt(3))/(2)hatj and c=-(1)/(2)hati-(sqrt(3))/(2)hatj`
Therefore, `|p+q+r|=|lamda a+mub+vc|`
`=|lamdahati+mu(-(1)/(2)hati+(sqrt(3))/(2)hatj)+v(-(1)/(2)hati-(sqrt(3))/(2)hatj)|`
`|(lamda+(mu)/(2)-(v)/(2))hati+(sqrt(3))/(2)(mu-v)hatj|`
`=sqrt((lamda-(mu)/(2)-(v)/(2))^(2)+(3)/(4)(mu-v)^(2))`
`=sqrt(lamda^(2)+mu^(2)+v^(2)-lamdamu-lamdav-muv)`
`=(1)/(sqrt(2))sqrt((lamda-mu)^(2)+(mu-v)^(2)+(v-lamda)^(2))`
`=(1)/(sqrt(2))sqrt(1+1+4)=sqrt(3)`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If vec a, vec b, vec c are three mutually perpendicular vectors such that | vec a | = | vec b | = | vec c | then (vec a + vec b + vec c) * vec a =

If vec a, vec b, vec c are three non-coplanar vectors such that vec a + vec b + vec c = alphavec d and vec b + vec c + vec d = betavec a then vec a + vec b + vec c + vec d is equal to

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.

If vec a,vec b,vec c are unit vectors such that vec a+vec b+vec c=vec 0 find the value of vec a+vec b+vec bdot c+vec *vec a

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 find the value of vec a * vec b + vec b * vec c + vec c * vec avec a * vec b + vec b * vec c + vec c * vec a

If vec a , vec b , vec c are three non coplanar vectors such that vec ddot vec a= vec ddot vec b= vec ddot vec c=0, then show that d is the null vector.

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is (pi)/(2), then

If vec a,vec b,vec c are three vectors such that vec a+vec b+vec c=vec 0, then prove that vec a xxvec b=vec b xxvec c=vec c xxvec a