Home
Class 12
MATHS
Given three vectors veca, vecb and vecc ...

Given three vectors `veca, vecb` and `vecc` are non-zero and non-coplanar vectors. Then which of the following are coplanar.

A

`a+b,b+c,c+a`

B

`a-b,b+c,c+a`

C

`a+b,b-c,c+a`

D

`a+b,b+c,c-a`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

`c+a(b+c)+(a-b)`
`a+b=(b-c)+(c+a)`
`a+c=(a+b++(c-a)`
So, vectors in options (b), (c) and (d) are coplanar.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-zero vectors, then which of the following statement(s) is/are true?

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 4veca+5vecb+vecc, -vecb-vecc, 5veca+9vecb+4vecc

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vec, -vec+3vecb-5vec,-veca+2vecb-3vec

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 5veca+6vecb+7vecc,7veca-8vecb+9vecc, 3veca+20vecb+5vecc

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

If vecA,vecB and vecC are coplanar vectors, then

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If non-zero vectors veca and vecb are equally inclined to coplanar vector vecc , then vecc can be