Home
Class 12
MATHS
Statement 1: | vec a|=3,| vec b|=a n d| ...

Statement 1: `| vec a|=3,| vec b|=a n d| vec a+ vec b|=5,t h e n| vec a- vec b|=5.` Statement 2: The length of the diagonals of a rectangle is the same.

A

Statement-II and statement II ar correct and Statement III is the correct explanation of statement I

B

Both statement I and statement II are correct but statement II is not the correct explanation of statement I

C

Statement I is correct but statement II is incorrect

D

Statement II is correct but statement I is incorrect

Text Solution

Verified by Experts

The correct Answer is:
A

We have, adjacent sides of triangle `|a|=3,|b|=4`
the length of the diagonal is `|a+b|=5`
Since, it satisfies the Pythagoras theorem, `a bot b`
So, the parallelogram is a rectangle.
Hence, the length of the other diagonal is `|a-b|=5`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Statement 1:|vec a|=3,|vec b|=4and|vec a+vec b|=5, then |vec a-vec b|=5 statement 2: The length of the diagonals of a rectangle is the same.

if | vec a | = 3, | vec b | = 4, | vec a-vec b | = 5 then | vec a + vec b | =?

If | vec axx vec b|=4,\ | vec adot vec b|=2,\ t h e n\ | vec a|^2| vec b|^2= 6 b. 2 c. 20 d. 8

Statement 1: If |vec a+vec b|=|vec a-vec b|, then vec a and vec b are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude,then the parallelogram is a rectangle.

If |vec a|=1=|vec b| and |vec a + vec b|=sqrt3 then evaluate (2 vec a - vec b) * (3 vec a + vec b) .

If | vec A| = 2, | vec B| =5 and | vec A xx vec B | =8 , din the value of (vec A. vec B0 .

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

A parallelogram is constructed on 3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b are anti-parallel. Then the length of the longer diagonal is 40 b. 64 c. 32 d. 48

If |vec a|=3,|vec b|=5,|vec c|=7 and vec a+vec b+vec c=0 then angle between vec a and vec b is

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.