Home
Class 12
MATHS
P ,Q have position vectors vec a& vec b...

`P ,Q` have position vectors ` vec a& vec b` relative to the origin `' O^(prime)&X , Ya n d vec P Q` internally and externally respectgively in the ratio `2:1` Vector ` vec X Y=` `3/2( vec b- vec a)` b. `4/3( vec a- vec b)` c. `5/6( vec b- vec a)` d. `4/3( vec b- vec a)`

Text Solution

Verified by Experts

The correct Answer is:
0

Since, X and Y divide PQ internaly and exteranally in the ratio 2:1 then `X=(2b+a)/(3) and y=2b-a`
`thereforeXY=`Position vector y-position vector off x
`=2b-a-(2b+a)/(3)=(4b)/(3)-(4a)/(3)`
On comparing it with `lamda a+mub`, we get
`lamda=-(4)/(3) and mu=(4)/(3)`
`therefore|lamda+mu|=|(-4)/(3)+(4)/93)|=0`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

P ,Q have position vectors vec a& vec b relative to the origin ' O^(prime)&X , Ya n d vec P Q internally and externally respectgively in the ratio 2:1 Vector vec X Y= a. 3/2( vec b- vec a) b. 4/3( vec a- vec b) c. 5/6( vec b- vec a) d. 4/3( vec b- vec a)

The position vector of A,B are vec a and vec b respectively.The position vector of C is (5(vec a)/(3))-vec b then

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

If two vectors vec a and vec b are such that |vec a|=2,|vec b|=1 and vec a*vec b=1, find (3vec a-5vec b)*(2vec a+7vec b)

If vec a,vec b,vec c are the position vectors of points A,B,C and D respectively such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 then D is the

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)

Show that the points with position vectors vec a-2vec b+3vec c,-2vec a+3vec b-vec c and 4vec a-7vec b+7vec c are collinear.

If vec a=vec p+vec q,vec p xxvec b=0 and vec q*vec b=0 then prove that (vec b xx(vec a xxvec b))/(vec b*vec b)=vec q

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3