Home
Class 12
MATHS
If the points a(cosalpha+hatisingamma),b...

If the points `a(cosalpha+hatisingamma),b(cosbeta+hatisinbeta) and c(cosgamma+hati sin gamma)` are collinear, then the value of |z| is . . (where `z=bc sin(beta-gamma)+ca sin(gamma-alpha)+ab sin(alpha+beta)+3hati`)

Text Solution

Verified by Experts

The correct Answer is:
3

`|(acosbeta,asinalpha,1),(bcosbeta,bsinbeta,1),(c cosgammac sin gamma,10)|=0`
`impliesbcsin(gamma-beta)+a sin(alpha-gamma)+absin(beta-alpha)=0`
`implies|z|=3`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

Delta ABC has vertices A(a cos alpha,a sin alpha),B(a cos beta,a sin beta) and C(a cos gamma,a sin gamma) then its orthocentre is

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

prove that | (sin alpha, sin beta, sin gamma), (cos alpha, cos beta, cos gamma), (sin 2alpha, sin 2beta, sin 2gamma) | = 4sin (1/2) (beta-gamma) * sin (1/2) (gamma-alpha) * sin (1/2) (alpha-beta) xx {sin (beta + gamma) + sin (gamma + alpha) + sin (alpha + beta)}.

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC=

If cos alpha+2cos beta+3cos gamma=sin alpha+2sin beta+3sin gamma=0 then the value of sin3 alpha+8sin3 beta+27sin3 gamma is sin(a+b+gamma)b.3sin(alpha+beta+gamma) c.18sin(alpha+beta+gamma) d.sin(alpha+2 beta+3)