Home
Class 12
MATHS
Find the all the values of lamda such th...

Find the all the values of lamda such that (x,y,z)!=(0,0,0)`and `x(hati+hatj+3hatk)+y(3hati-3hatj+hatk)+z(-4hati+5hatj)=lamda(xhati+yhatj+zhatk)`

Text Solution

Verified by Experts

Here,
`(hati+hatj+hatk)x+(3hati-3hatj+hatk)y+(-4hati+5hatj)z=lamda(xhati+yhatj+zhatk)`
On comparing the coefficient of `hati,hatj and hatk`, we get
`x+3y-4z=lamdax`
`implies(1-lamda)x+3y-4z=0` . . . (i)
`x-3y+5z=lamda y`
`implies x-(3+lamda)y+5z=0` . . (ii)
`3x+y=lamdaz`
`implies 3x+y-lamdaz=0` . . . (iii)
The eqs. (i), (ii) and (iiI) will have a non-trivial solution, if
`|(1-lamda,3,-4),(1,-(3+lamda),5),(3,1,-lamda)|=0`
`[because (x,y,z)ne(0,0,0)thereforeDelta=0]`
`implies(1-lamda){lamda(3+lamda)-5}-3{-lamda-15}-4{1+3(lamda+3)}=0`
`implies(1-lamda){lamda^(2)+3lamda-5}-3{-lamda-15}-4{3lamda+10}=0`
`implies lamda^(3)+2lamda^(2)+lamda=0`
`implies lamda(lamda^(2)+2lamda+1)=0`
`implies lamda(lamda+1)^(2)=0`
`therefore lamda =0` or `lamda=-1`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The value of lambda in R such that (x, y, z) ne (0, 0, ) and (2hati+3hatj-4hatk)x+(3hati-hatj+2hatk)y+(i-2hatj)z=lambda(xhati+yhatj+zhatk) lies in

If (x,y,z) ne (0,0,0) and (hati + hatj +3hatk )x + (3 hati - 3 hatj + hatk )y +(-4 hati + 5 hatj ) z = a (x hati + y hatj + z hatk ), then the values of a are

Find the value of lamda so that the two vectors 2hati+3hatj-hatk and -4hati-6hatj+lamda hatk are parallel

Calculate the values of (i) hatj. (2hati - 3hatj +hatk) and (ii) (2hati - hatj) (3hati + hatk)

Find the values of x,y and z so that vectors veca=xhati+4hatj+zhatk and vecb=3hati+yhatj+hatk are equal.

Find the value of lamda so that the two vectors 2hati+3hatj-hatk and -4hati-6hatj+lamda hatk are Perpendicular to each other

The lines vecr=(hati+hatj)+lamda(hati+hatk)andvecr=(hati+hatj)+mu(-hati+hatj-hatk) are

Find the angle between the line: vecr=4hati-hatj+lamda(hati+2hatj-2hatk) and vevr=hati-hatj+2hatk-mu(2hati+4hatj-4hatk)

The equation of plane containing the lines barr=(2hatj-3hatk)+lamda(hati+2hatj+3hatk) barr=(2hati+6hatj+3hatk)+lamda(2hati+3hatj+4hatk)

The value of lambda, for which the four points 2hati+3hatj-hatk, hati-2hatj+3hatk, 3hati+4hatj-2hatk, hati-6hatj+lambda hatk are coplanar, is