Home
Class 12
MATHS
If vec c = 3vec a+4vec b and 2vec c =vec...

If `vec c = 3vec a+4vec b and 2vec c =vec a -3vec b`, show that (i) `vec c and vec a` have the same direction and `|vec c| gt |vec a|`(ii) `vec b and vec c` have opposite direction and `|vec c| gt |vec b|`

Text Solution

Verified by Experts

We have,
`c=3a+4b and 2c=a-3b`
`implies2(3a+4b)=a-3b`
`implies5a=-11b`
`implies a=-(11)/(5)b and b=-(5)/(11)a`
(i) `c=3a+b=3a+4(-(5)/(11)a)" "(using" "b=-(5)/(11)a)`
`=3a-(20)/(11)a=(13)/(11)a`
which shows that c and a have the same direction.
and `c=(13)/(11)a `
`implies|c|=(13)/(11)|a|implies|c|gt|a|`
(ii) we have, `c=3a+4b and a=-(11)/(5)b`
`c=3(-(11)/(5)b)+4b=-(33)/(5)b+4b`
`c=-(13)/(5)b`
this shows c and b have opposite directions. ,brgt also `|c|=|-(13)/(5)b|=(13)/(5)|b|implies|c|gt|b|`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If vec c=3vec a+4vec b and 2vec c=vec a-3vec b show that (i)vec c and vec a have the same direction and |vec c|>|vec a|(ii)vec b and vec c have opposite direction and |vec c|>|vec b|

If vec c=2vec a+3vec b and 3vec c=3vec a-4vec b show that (i)vec c and vec a are like parallel and |vec c|>|vec a|( ii) vec c and vec b are unlike parallel and |vec c|>5|vec b|

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

[vec a xx (3vec b + 2vec c), vec b xx (vec c-2vec a), 2vec c xx (vec a-3vec b)]

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.