Home
Class 12
MATHS
Statement -1 : If a transversal cuts t...

Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then
`(OL)/(OA) + (OM)/(OB) =(ON)/(OC)`
Statement -2 : Three points with position vectors ` veca , vec b , vec c ` are collinear iff there exist scalars x, y, z not all zero such that `x vec a + y vec b +z vec c = vec 0, " where " x +y + z=0.`

Text Solution

Verified by Experts

We have,
ON=OL+LN=OL+OM` . . (i) ltb rgt Let `OL=xOA,OM=yOB` . . . (ii)
annd ON=zOC
so, `|OL|=x|OA|,|OM|=y|OB| and |ON|=z|OC|`
`thereforex(OL)/(OA),y=(OM)/(OB) and z=(ON)/(OC)`
`therefore` From Eqs. (i) and (ii), we have

`zOC=xOA+yOB`
`implies xOA+yOB-zOC=0`
`therefore`Points A,B and C are collinear, the sum of the coefficients of their PV must be zero.
`implies x+y-z=0`
i.e., `(OL)/(OA)+(OM)/(OB)=(ON)/(OC)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise For Session 2|17 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Three points with position vectors vec(a), vec(b), vec(c ) will be collinear if there exist scalars x, y, z such that

Statement -1 : If veca and vecb are non- collinear vectors, then points having position vectors x_(1) vec(a) + y_(1) vec(b) , x_(2)vec(a)+ y_(2) vec(b) and x_(3) veca + y_(3) vecb are collinear if |(x_(1),x_(2),x_(3)),(y_(1),y_(2),y_(3)),(1,1,1)|=0 Statement -2: Three points with position vectors veca, vecb , vec c are collinear iff there exist scalars x, y, z not all zero such that x vec a + y vec b + z vec c = vec 0, " where " x+y+z=0.

Prove that the points A,B and C with position vectors vec a,vec b and vec c respectively are collinear if and only if vec a xxvec b+vec b xxvec c+vec c xxvec a=vec 0

Prove that a necessary and sufficient condition for three vectors vec a,vec b and vec c to be coplanar is that there exist scalars l,m,n not all zero simultaneously such that lvec a+mvec b+nvec c=vec 0

Let vec a,vec b,vec c be the position vectors of three distinct points A,B,C. If there exist scalars x, y,Z (not all zero) such that xvec a+yvec b+zvec c=0 and x+y+z=0, then show that A,B and C lie on a line.

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

Show that the points with position vectors vec a-2vec b+3vec c,-2vec a+3vec b-vec c and 4vec a-7vec b+7vec c are collinear.

The points with position vectors vec a-2vec b+3vec c,2vec a+lambdavec b-4vec c,-7vec b+10vec c will be collinear if lambda=...cdots

Show that the points having position vectors vec(a), vec(b),(vec(c)=3 vec(a)- 2 vec(b)) are collinear, whatever be vec(a),vec(b),vec(c).