Home
Class 12
MATHS
If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b...

If `|{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0` and the vectors
`overset(to)(A) =(1, a, a^(2)) , overset(to)(B) = (1, b, b^(2)) , overset(to)(C )(1,c,c^(2))`
are non-coplanar then the product abc = ….

A

2

B

`-1`

C

`1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

Since, `|(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),a+c^(3))|=|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|+|(a,a^(2),a^(3)),(b,b^(2),b^(3)),(c,c^(2),c^(3))|=0`
`implies |(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=abc|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=0`
`implies (1+abc)|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=0" "[because|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)| ne 0]`
`implies 1+abc=0`
`implies abc=-1`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

If |{:( a , a ^(2), 1+ a ^(3)), ( b , b^(2), 1+ b ^(3)), ( c ,c ^(2), 1 + c ^(3)):}|=0 and vectors (1, a,a ^(2)), (1, b, b ^(2)) and (1, c, c^(2)) are non-coplanar, then the value of abc +1 is

If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 and the vectors given by A(1, a, a^(2)), B(1, b, b^(2)), C(1, c, c^(2)) are non-collinear, then abc=

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1, a , a^2), B-=(1, b , b^2), C-=(1, c , c^2) are non-coplanar then the value of abc equal to

If |((a_1 - a)^2,(a_1 - b)^2,(a_1 - c)^2),((b_1 - a)^2,(b_1 - b)^2,(b_1 - c)^2),((c_1 - a)^2,(c_1-b)^2,(c_1-c)^2)|=0 and if the vectors vec alpha = (1, a, a^2), vec beta = (1,b,b^2),vec gamma=(1,c,c^2) are non coplanar, show that the vectors vec alpha_1 =(1,a,a_1^2) ,vec beta_1=(1,b_1,b_1^2),vec gamma_1=(1,c_1,c_1^2) are coplanar.

If |[a,a^(2),1+a^(3)],[b,b^(2),1+b^(3)],[c,c^(2),1+c^(3)]|=0" and "|[a,a^(2),1],[b,b^(2),1],[c,c^(2),1]|!=0 then show that abc =-1