Home
Class 12
MATHS
In any Delta ABC, prove that cos C = (a^...

In any `Delta ABC`, prove that `cos C = (a^2+b^2-c^2)/(2ab)` with the help of vectors

Promotional Banner

Similar Questions

Explore conceptually related problems

In any Delta ABC, prove that :a(b cos C-c cos B)=b^(2)-c^(2)

In any Delta ABC, prove that ”a cos”(B-C)/2=(b+c) “sin” A/2

In any triangle ABC, prove that cos A= frac{b^2+c^2-a^2}{2bc} .

In Delta ABC, prove that cos A=(b^(2)+c^(2)-a^(2))/(2bc) by vector method.

Prove that, in any triangle ABC, cos C=(a^2+b^2-c^2)/(2ab) .

For any triangle ABC, prove that a(bcosC-ccosB)=b^2-c^2

In any triangle ABC, prove that : a (b cos C-c cos B) = b^2 -c^2 .

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

In any Delta ABC, prove that :(b+c)cos((B+C)/(2))=a cos((B-C)/(2))])

In any Delta ABC, prove that :a cos A+b cos B+c cos C=2a sin B sin C