Home
Class 11
MATHS
If the lines (x+4)/3=(y+6)/5=(z-1)/(-2) ...

If the lines `(x+4)/3=(y+6)/5=(z-1)/(-2)` and `3x-2y+z+5=0=2x+3y+4z-k` are coplanar, then `k=` (a)`-4` (2)` 3` (3)` 2` (4) ` 4` (5)` 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the lines (x+4)/3=(y+6)/5=(z-1)/(-2) and 3x-2y+z+5=0=2x+3y+4z-4 are co-planar.

The (x+4)/(3) = (y+6)/(5) = (z-1)/(-2) and 3x - 2y + z+5 =0 = 2x + 3y + 4z -k are coplanar for k is equal to

If the lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar then k can have

the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(1)=(z-5)/(1) are coplanar if k=?

The lines (x-2)/1=(y-3)/1=(z-4)/-k and (x-1)/k=(y-4)/2=(z-5)/1 are coplaner if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if