Home
Class 11
MATHS
Let veca, vecb and vecc be non - coplana...

Let `veca, vecb and vecc` be non - coplanar unit vectors, equally inclined to one another at an angle `theta`. If `veca xx vecb + vecb xx vecc = p veca + q vecb + rvecc`, find scalars p, q and r in terms of `theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be three non-coplanar unit vectors such that the angle between every pair of them is pi//3 . If veca xx vecb + vecb xx vecc =pveca + qvecb + rvecc , where p, q and r are scalars, then the value of (p^(2) + 2q^(2)+ r^(2))/q^(2) is:

veca, vecb, vecc are non-zero unit vector inclined pairwise with the same angle theta . P,q,r are non-zero scalars satisfying veca xx vecb + vecb xx vecc=pveca + qvecb + rvecc . Now, answer the following questions: q/2+2 cos theta is equal to:

veca, vecb, vecc are non-zero unit vector inclined pairwise with the same angle theta . P,q,r are non-zero scalars satisfying veca xx vecb + vecb xx vecc=pveca + qvecb + rvecc . Now, answer the following questions: Volume of parallelogram with edges a,b and c is equal to:

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be