Home
Class 12
MATHS
The value of lim(n rarr oo)(1/(1-n^4)+8/...

The value of `lim_(n rarr oo)(1/(1-n^4)+8/(1-n^4)+...+n^3/(1-n^4))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of lim_(x rarr oo)(n!)/((n+1)!-n!)

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_(n rarr oo) [(1)/(1-n^(4))+(8)/(1-n^(4))+…...+(n^(3))/(1-n^(4))] equals :

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

The value of lim_(n rarr oo)(((2n)(2n+1)(2n+2)...(4n))^((1)/(n)))/((n)^(2+(1)/(n))) is