Home
Class 11
MATHS
If vec u , vec v , vec w are noncopl...

If ` vec u , vec v , vec w` are noncoplanar vectors and p, q are real numbers, then the equality `[3 vec u ,""p vec v , p vec w]-[p vec v ,"" vec w , q vec u]-[2 vec w ,""q vec v , q vec u]=0` holds for (A) exactly one value of (p, q) (B) exactly two values of (p, q) (C) more than two but not all values of (p, q) (D) all values of (p, q)

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec u , vec nu , and vec w are non coplanar vectors and p,q are real numbers, then the equality [3 vec u p vec nu p vec w]-[p vec nu vec w q vec u]-[2 vec w q vec nu q vec u] = 0 holds for

vec(u),vec(v) and vec(w) are not co-planar vectors and p and q are real numbers. If [3vec(u),p vec(v),p vec(w)]-[p vec(v),vec(w),q vec(u)]-[2vec(w),q vec(v),q vec(u)]=0 then ……………

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . vec v xx vec w

If vec u , vec v and vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot [( vec u- vec v)xx( vec v- vec w)] = vec u dot (vec v xx vec w)

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w)dot [( vec u- vec v)xx( vec v- vec w)] = vec u dot (vec v xx vec w)

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . (vec v xx vec w)

If vec u , vec va n d vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot( vec u- vec v)xx( vec v- vec w)= vec udot vec vdotxx vec w

If vec u, vec nu, vec w are three non-coplanar vectors, then (vec u + vec nu - vec w).[(vec u - vec nu) xx (vec nu - vec w)] =

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is