Home
Class 12
MATHS
lim(x rarr 0) (ln(2+x)+ln0.5)/x is equal...

`lim_(x rarr 0) (ln(2+x)+ln0.5)/x` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x log x .

lim_(x rarr0)x log(sin x)

The value of lim_(x rarr0)(log cos x)/(x) is equal to

lim_(x rarr 0) [[(log(1+x))]/x]=

lim(x rarr0)(log(2+x)+log(0.5))/(x)

lim_(x->0) (ln(2+x)+ln0.5)/x

lim_(x rarr0)(ln(sin3x))/(ln(sin x)) is equal to

lim_(x rarr0)(ln(sin2x))/(ln(sin x)) is equals to a.0 b.1 c.2 d.non x rarr0ln(sin x) existent

lim_(x rarr 0) 2/x log (1+x) =