Home
Class 11
MATHS
There exists a function f(x) satisfying ...

There exists a function `f(x)` satisfying `f (0)=1,f'(0)=-1,f(x) lt 0 ,AA x and

Promotional Banner

Similar Questions

Explore conceptually related problems

There exists a function f(x) satisfying 'f (0)=1,f(0)=-1,f(x) lt 0,AAx and

There exists a function f(x) satisfying f(0)=1, f'(0)=-1, f(x) gt 0 , for all x, then :

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to