Home
Class 11
MATHS
If I1=inte^(e^2)dx/(lnx) and I2=int1^2e^...

If `I_1=int_e^(e^2)dx/(lnx)` and `I_2=int_1^2e^x/xdx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_1= int_e^(e^2)dx/logx and I_2= int_1^2e^x/xdx , then find relation between I_1 and I_2

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

int_0^1 x^2e^xdx

int_0^1 x^2e^xdx

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I_(1)=int_(e)^(e^(2))(dx)/(logx) and I_(2)=int_(1)^(2)(e^(x))/(x)dx then

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then

I=int_(-1)^1e^xdx